12 research outputs found

    Solar Energy Absorbers

    Get PDF

    Noise Calculation Charts and Indoor Environmental Quality for Evaluating Industrial Indoor Environment and Health

    Get PDF
    Noise, defined as “a sensation of unwanted intensity of a wave,” is perception of a pollutant and a type of environmental stressor. An environmental stressor such as noise may have detrimental effects on various aspects of health. The unwanted intensity of a wave is a propagation of noise due to transmission of waves (viz. physical agents) such as sun, light, sound, heat, electricity, fluid, and fire. The effects of these physical agents on human health as noise-intruding elements in an industrial indoor environment are discussed. Noise characterization is discussed from indoor air quality and health perspective. The noise calculation charts are detailed for interference of noise waves based on a benchmark solution. These charts calculate positive and negative magnitudes of noise based on noise characterization of waves due to power difference of two intensities. The noise interference is calculated from newly devised noise measurement equations and their units. The grades and flag colors are notated to the noise calculation charts. Furthermore, illustrated examples of noise characterization calculations for indoor environment are presented using devised noise measurement equations. Indoor environmental quality and noise instrumentation are discussed. Adverse effects of pollutants on human health are summarized. Ventilation systems for dispersion of pollutants from industrial indoor environment are also elaborated

    Building-Integrated Thermoelectric Cooling-Photovoltaic (TEC-PV) Devices

    Get PDF
    Photovoltaic driven thermoelectric cooling devices are of great importance in terms of alternative cooling sustainable technologies. Depending on Peltier effect of the thermoelectric cooling (TEC), heating and cooling is achieved by applying a voltage difference in the thermoelectric module. Theoretical design considerations of building-integrated thermoelectric cooling-photovoltaic (TEC-PV) devices are analyzed. System design of a TEC-PV device is investigated with varying fresh outdoor ventilation rates. Integrated design with ceiling suspended, wall mounted, rooftop and active façade TEC-PV devices is considered in the analysis. The effect of voltage, air flow rate and height of fin heat transfer surface is also investigated. Expressions along with results for theoretical exergy of a TEC-PV device are also provided

    Solar Energy Conversion and Noise Characterization in Photovoltaic Devices with Ventilation

    Get PDF
    An investigation is performed on solar energy conversion and noise characterization in photovoltaic devices with ventilation. A parallel plate photovoltaic (PV) device was installed with a pair of PV modules, a ventilated air cavity, and an insulating back panel of plywood board filled with polystyrene installed in an outdoor test room. The characterization of noise interference due to power difference of two intensities for composite waves on a PV device is presented. Standard definitions of noise sources, their measurement equations, their units, and their origins under limiting reference conditions are devised. The experiments were conducted for obtaining currents, voltages, temperatures, air velocities, sensible heat capacity, and thermal storage capacity of a PV device with active ventilation through an outdoor test room. Photovoltaic amplification was attained with power output from a potentiometer through the rotation of its circular knob. A parallel plate PV device was studied for its electrical parameters as resistance-capacitance (RC) electrical analog circuit. The effect of inductive and capacitive heating losses was considered in evaluating electrical characteristics of a PV device exposed to solar radiation. Noise filter systems as per noise sources are illustrated with examples. Some examples of noise unit calculations are tabulated based on devised noise measurement equations

    Acoustic Filters for Sensors and Transducers: Energy Policy Instrument for Monitoring and Evaluating Holy Places and Their Habitants

    Get PDF
    The aim of the study is to present a brief overview of energy policy instrument for monitoring and evaluating holy places and their habitants with the aid of acoustic filters for sensors and transducers. A monitoring protocol for policy instrument is presented for noise protection and security from power systems. Methods of information and data collection are briefly elaborated. The power systems are classified as per source signals of solar power, electric power, light power, sound power, heat power, fluid power and fire power. The acoustic filters as per source of noise signals from power systems are defined. The filters are differentiated as per source signal of unwanted frequencies from solar power, electric power, light power, sound power, heat power, fluid power and fire power. Some examples of acoustic filters are mentioned as per source of noise signal. A slide rule for noise measurement is illustrated along with its noise grades and flag colors under limiting conditions. Some noise filtering results from various power systems of an outdoor duct are also tabulated. An overview of noise systems integration with command and control center is described. A brief discussion on management of holy places and their habitants through monitoring and evaluation is also mentioned

    Noise Transmission Losses in Integrated Acoustic and Thermo-Fluid Insulation Panels

    Get PDF
    A simulation model is proposed for integrated acoustic and thermo-fluid insulation constituting an airflow window with a photovoltaic (PV) solar wall spandrel section. The physical model of an outdoor test-room comprises of a wooden framed double or cavity wall assembly with: (i) a triple glazed fenestration section with a closed roller blind; (ii) a solar wall spandrel section of double-glass PV modules and back panel of polystyrene filled plywood board; and (iii) fan pressure-based manually operated inlet and exhaust dampers with ventilation through an exhaust fan for transportation of heat. A generalized two-dimensional analysis of a double wall structure is illustrated by the placement of surface and air nodes into two adjacent stacks of control volumes representing outer and inner walls. The integrated noise insulation and energy conversion model is presented. The energy conversion and noise insulation model are supported with some numerical results using devised noise measurement equations. The following additional parameters are also calculated to support the integrated insulation model: noise transmission losses and noise reduction coefficients for various types of noises. State-of-the-art of acoustic and thermo-fluid insulation along with general building construction guidelines for acoustic and thermal insulation are also presented

    Developments in Wireless Power Transfer Using Solar Energy

    Get PDF
    This chapter presents state-of-the-art and major developments in wireless power transfer using solar energy. The brief state-of-the-art is presented for solar photovoltaic technologies which can be combined with wireless power transfer (WPT) to interact with the ambient solar energy. The main purpose of the solar photovoltaic system is to distribute the collected electrical energy in various small-scale power applications wirelessly. These recent developments give technology based on how to transmit electrical power without any wires, with a small-scale by using solar energy. The power can also be transferred wirelessly through an inductive coupling as an antenna. With this wireless electricity we can charge and make wireless electricity as an input source to electronic equipment such as cellphone, MP3 Player etc. In harvesting energy, technologies of ambient solar radiation like solar photovoltaic, kinetic, thermal or electro-magnetic (EM) energy can be used to recharge the batteries. Radio frequency (RF) harvesting technologies are also popular as they are enormously available in the atmosphere. The energy converted to useful DC energy which can be used to charge electrical devices which need low power consumption. The chapter has also presented a parallel plate photovoltaic amplifier connected to a potentiometer as a Resistance-Capacitance (RC) circuit power amplifier. The effect of inductance and resulting power transfer has been theoretically determined in the RC amplifier circuit. The electrical and thermal properties and measurements from a parallel plate photovoltaic amplifier were collected to analyze the unbalanced power transfer and inductance in a nonlinear RC circuit amplifier using equivalent transfer functions. The concept of Wireless Information and Power Transfer using Electromagnetic and Radio Waves of Solar Energy Spectrum is also briefly outlined

    Chapter Developments in Wireless Power Transfer Using Solar Energy

    Get PDF
    This chapter presents state-of-the-art and major developments in wireless power transfer using solar energy. The brief state-of-the-art is presented for solar photovoltaic technologies which can be combined with wireless power transfer (WPT) to interact with the ambient solar energy. The main purpose of the solar photovoltaic system is to distribute the collected electrical energy in various small-scale power applications wirelessly. These recent developments give technology based on how to transmit electrical power without any wires, with a small-scale by using solar energy. The power can also be transferred wirelessly through an inductive coupling as an antenna. With this wireless electricity we can charge and make wireless electricity as an input source to electronic equipment such as cellphone, MP3 Player etc. In harvesting energy, technologies of ambient solar radiation like solar photovoltaic, kinetic, thermal or electro-magnetic (EM) energy can be used to recharge the batteries. Radio frequency (RF) harvesting technologies are also popular as they are enormously available in the atmosphere. The energy converted to useful DC energy which can be used to charge electrical devices which need low power consumption. The chapter has also presented a parallel plate photovoltaic amplifier connected to a potentiometer as a Resistance-Capacitance (RC) circuit power amplifier. The effect of inductance and resulting power transfer has been theoretically determined in the RC amplifier circuit. The electrical and thermal properties and measurements from a parallel plate photovoltaic amplifier were collected to analyze the unbalanced power transfer and inductance in a nonlinear RC circuit amplifier using equivalent transfer functions. The concept of Wireless Information and Power Transfer using Electromagnetic and Radio Waves of Solar Energy Spectrum is also briefly outlined

    Cooling load and noise characterization modeling for photovoltaic driven building integrated thermoelectric cooling devices

    No full text
    Photovoltaic driven thermoelectric cooling devices are investigated for installation in a modular outdoor test-room. Because of Peltier effect in a thermoelectric cooling (TEC), heating and cooling is achieved by applying a voltage difference across the thermoelectric module. Theoretical design modeling of cooling load and noise characterization of building integrated Thermoelectric (TEC) Devices is analyzed. System design of photovoltaic driven TEC devices is investigated with varying fresh outdoor ventilation rates. Building integrated design of TEC devices inside ceiling suspended duct along with TEC devices mounted on wall driven by rooftop and active façade photovoltaic devices is considered in the analysis. In this way, two-stage dehumidification is achieved by two different sets of TEC devices. The investigation is conducted for effect of voltage, air flow rate and height of fin heat transfer surface. Expressions along with results for noise characterization in photovoltaic driven building integrated TEC devices are also provided
    corecore